Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice.
نویسندگان
چکیده
Arachidonic acid-derived epoxides, epoxyeicosatrienoic acids, are important regulators of vascular homeostasis and inflammation, and therefore manipulation of their levels is a potentially useful pharmacological strategy. Soluble epoxide hydrolase converts epoxyeicosatrienoic acids to their corresponding diols, dihydroxyeicosatrienoic acids, modifying or eliminating the function of these oxylipins. To better understand the phenotypic impact of Ephx2 disruption, two independently derived colonies of soluble epoxide hydrolase-null mice were compared. We examined this genotype evaluating protein expression, biofluid oxylipin profile, tissue oxylipin production capacity, and blood pressure. Ephx2 gene disruption eliminated soluble epoxide hydrolase protein expression and activity in liver, kidney, and heart from each colony. Plasma levels of epoxy fatty acids were increased, and fatty acid diols levels were decreased, while measured levels of lipoxygenase- and cyclooxygenase-dependent oxylipins were unchanged. Liver and kidney homogenates also show elevated epoxide fatty acids. However, in whole kidney homogenate a 4-fold increase in the formation of 20-hydroxyeicosatetraenoic acid was measured along with a 3-fold increase in lipoxygenase-derived hydroxylation and prostanoid production. Unlike previous reports, however, neither Ephx2-null colony showed alterations in basal blood pressure. Finally, the soluble epoxide hydrolase-null mice show a survival advantage following acute systemic inflammation. The data suggest that blood pressure homeostasis may be achieved by increasing production of the vasoconstrictor, 20-hydroxyeicosatetraenoic acid in the kidney of the Ephx2-null mice. This shift in renal metabolism is likely a metabolic compensation for the loss of the soluble epoxide hydrolase gene.
منابع مشابه
Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension.
Inhibition of soluble epoxide hydrolase (sEH) has been shown to be renal protective in rat models of salt-sensitive hypertension. Here, we hypothesize that targeted disruption of the sEH gene (Ephx2) prevents both renal inflammation and injury in deoxycorticosterone acetate plus high salt (DOCA-salt) hypertensive mice. Mean arterial blood pressure (MAP) increased significantly in the DOCA-salt ...
متن کاملPolymorphism in soluble epoxide hydrolase and blood pressure in spontaneously hypertensive rats.
We measured soluble epoxide hydrolase (sEH) renal gene expression in prehypertensive (4 to 5 weeks old) spontaneously hypertensive rats of the Heidelberg SP substrain (SHR [Heid]) and when blood pressure levels entered the hypertensive plateau (17 to 18 weeks old) and compared expression with matched Wistar-Kyoto (WKY [Heid]) rats. Less expression of the gene encoding sEH (EPHX2) was observed i...
متن کاملSoluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance.
Visceral obesity has been defined as an important element of the metabolic syndrome and contributes to the development of insulin resistance and cardiovascular disease. Increasing endogenous levels of epoxyeicosatrienoic acids (EETs) are known for their analgesic, antihypertensive, and antiinflammatory effects. The availability of EETs is limited primarily by the soluble epoxide hydrolase (sEH,...
متن کاملGeneration and characterization of epoxide hydrolase 3 (EPHX3)-deficient mice
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play an important role in blood pressure regulation, protection against ischemia-reperfusion injury, angiogenesis, and inflammation. Epoxide hydrolases metabolize EETs to their corresponding diols (dihydroxyeicosatrienoic acids; DHETs) which are biologically less active. Microsomal epoxid...
متن کاملEffects of starvation and re-feeding on compensatory growth performance, plasma metabolites and IGF-I gene expression of Persian sturgeon (Acipenser persicus, Borodin 1897)
The effects of starvation and subsequent re-feeding on compensatory growth performance, blood serum metabolites and IGF-ImRNA expression in liver and muscle were investigated in juvenile Persian sturgeon. Growth indices including body weight, SGR, CF, and HSI significantly decreased after starvation. However, after re-feeding sturgeons that were starved for 1 week reached the same weight as the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 5 شماره
صفحات -
تاریخ انتشار 2007